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Directed lines in sparse potentials

T. J. Newman and A. J. McKane
Department of Theoretical Physics, University of Manchester, Manchester, M13 9PL, United Kingdom

~Received 20 May 1996!

We present a continuum formulation of a (d11)-dimensional directed line interacting with sparse potentials
~i.e., d-dimensional potentials defined only at discrete longitudinal locations.! An iterative solution for the
partition function is derived. The impulsive influence of the potentials induces discontinuities in the evolution
of the probability densityP(x,t) of the directed line. The effects of these discontinuities are studied in detail
for the simple case of a single defect. We then investigate sparse columnar potentials defined as a periodic
array of defects in (211) dimensions, and solve exactly forP. A nontrivial binding-unbinding transition is
found. @S1063-651X~97!04101-9#

PACS number~s!: 05.40.1j, 03.65.2w, 68.35.Rh, 36.20.2r
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I. INTRODUCTION

The physics of directed lines~or directed polymers! has
been the focus of much interest over the past two deca
This is mainly due to the very wide range of applicability
these simple models to important physical processes, suc
wetting @1#, the motion of domain walls in magnets@2#, and
the physics of flux lines in superconductors@3#. The interest
has been intensified by attempting to understand the effe
disordered potentials in such systems. In superconduc
for instance, it is well known that point disorder can help
localize the flux lines, hence allowing true superconduct
current flow; and recently, it has been realized that colum
defects provide an even better mechanism for pinning@4#. At
the model level, the addition of disorder allows nonobvio
connections to be made to other physical systems suc
spin glasses@5#, nonequilibrium interface growth@6#, and
shock waves in fluids~in terms of the noisy Burgers equatio
@7#!. A quantitative understanding of the effect of such typ
of disorder on directed lines is still lacking.

Aside from these important applications, the model o
single directed line interacting with an external potential is
substantial interest in its own right. There has been a g
deal of work on the purely theoretical front in trying to u
derstand these systems, with approaches ranging from la
RSOS~restricted solid-on-solid! descriptions@1#, to powerful
renormalization group studies@8#, and phenomenologica
scaling arguments@9#. As indicated above, what is still lack
ing is a systematic way of treating strongly disordered
tentials; although much progress may be made in~111! di-
mensions@1,10#. The overwhelming difficulties present i
the analytic study of directed polymers may be countered
some degree by simplifying some aspects of the prob
without trivializing the physics. One possibility is to simplif
the form of the external potential. For instance, the probl
of bulk disorder is of enormous interest, but completely
tractable above~111! dimensions. One may then consid
simpler scenarios~such as a very dilute limit of point defects
or columnar disorder! where controlled analytic calculation
may provide precious insight. In fact, such is the richness
the physics of directed lines, that even for the simple
ample of a nondisordered columnar potential, there ex
551063-651X/97/55~1!/165~11!/$10.00
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nontrivial behavior of the line, especially as a function
spatial dimension@8,11,12#.

In this paper we shall introduce a certain class of mod
that is best described as ‘‘a directed line interacting w
sparse potentials.’’ To clarify this, consider a directed line
(d11) dimensions. We label the transverse directions b
position vectory and the longitudinal direction by a scala
s. The line generally exists in the presence of a poten
V(y,s). Our use of the term ‘‘sparse potentials’’ correspon
to the following form forV:

V~y,s!5 (
n51

`

vn~y!d~s2tn!,

where at this level of discussion the positions$tn% of the
‘‘impulses’’ vn , along with the functional form of the im-
pulses themselves are left free. Specific choices for th
quantities may be made which then correspond to physic
realizable systems. For instance, taking the$tn% to be regu-
larly spaced leads one to consider a directed line interac
with a set of layer potentials, as might be found in a regu
crystal. Alternatively, one may take the$tn% to be drawn
from some distribution function, which along with takin
vn(y);d(y2yn), corresponds to a directed line interactin
with a very dilute set of point defects, as may be realized
an ‘‘almost-pure’’ superconducting single crystal.

Towards the end of the paper, we shall be interested
specific subclass of sparse potentials, namely, periodic
lumnar arrays of point defects, where exact solutions
possible in the physically relevant case of (211) dimen-
sions. Before such specialization, we concern ourselves
a more general analysis of the continuum theory of spa
potentials. An important point is that the sparse potent
have an impulsive action on the probability density of t
directed line, leading to discontinuities in this functio
Along with this effect, is the physical constraint that th
discontinuity in the density must never be such as to m
the density negative. The short-scale consistency of
theory at these impulses will be seen to have dramatic eff
on the global properties of the probability density of the lin

The outline of the remainder of the paper is as follows.
the next section, we provide a general continuum formu
165 © 1997 The American Physical Society
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166 55T. J. NEWMAN AND A. J. McKANE
tion of the problem following the standard methods of
path-integral description. Section III is concerned with co
structing an iterative solution for the partition function for
given set of sparse potentials, due account being taken o
discontinuous nature of this function. In Sec. IV, we conce
trate on the simple case of a single sparse potential th
taken to be very short ranged in the transverse direct
~i.e., approaching ad function.! This corresponds to a singl
point defect, and is exactly solvable. Simple as it may
this case reveals the subtlety of the discontinuous natur
the probability density and allows us some intuition into t
qualitative difference of effects between attractive defe
~whose effect may be global! and repulsive defects~whose
effect is always local.! In Secs. V and VI we concentrate o
the case of a periodic array of potentials, each of which
taken to be short ranged — this is essentially a colum
array of point defects. Section V sets out the solution to
case of all the defects being either attractive or repuls
while Sec. VI is concerned with the solution to the case
alternating positive and negative defects. We restrict our
tention to the physically relevant case of (211) dimensions,
which by good fortune is the most analytically tractab
Comparison is made between our results for these mo
and recent investigations of related microscopic mod
@13,14#. We end the paper with our conclusions and a d
cussion of extensions to the present work.

II. FORMULATION OF THE MODEL

As mentioned in the Introduction, there are a number
model descriptions of directed lines, with the main differen
being whether one chooses to work in the continuum or o
lattice. In this paper we shall use a continuum formulati
which has the advantage that derived results will not be
pendent upon microscopic parameters, and thus may
hoped to have some universal applicability.

We consider a directed line in a (d11)-dimensional
space, withy labeling thed transverse directions, ands la-
beling the longitudinal direction. We demand that the li
begins at the point (0,0) and ends at (x,t). The restricted
partition function for the line, in the presence of a potent
V(y,s) is given by

Z~x,t !

5E
y~0!50

y~ t !5x
DyexpH 2

1

TE0
t

dsFkS dydsD 21V„y~s!,s…G J ,
~1!

whereT represents temperature, andk is the elastic constan
for the line.

Following standard methods@15# we may rewrite this
path integral in the form of a partial differential equatio
~PDE!. Explicitly one finds

] tZ~x,t !5n¹2Z2V~x,t !Z, ~2!

with boundary conditionZ(x,0)5dd(x). We have defined a
diffusion constantn5T/4k, and have scaledV so as to ab-
sorb a factor of 1/T.
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At this point we specialize to the system of interest, i.
the case whereV represents a set of sparse potentials. E
plicitly we write

V~y,s!5 (
n51

`

vn~y!d~s2tn!, ~3!

where$tn% represent the longitudinal locations of the pote
tials $vn(y)%. As a final step we integrate Eq.~2! using the
Green function of the diffusion equationg(x,t)
5(4pnt)2d/2exp(2x2/4nt), which yields an integral equa
tion for Z of the form

Z~x,t !5g~x,t !2E ddx8E
0

t

dt8g~x2x8,t2t8!

3 (
n51

`

vn~x8!d~ t82tn!Z~x8,t8!. ~4!

It appears to be a simple matter to integrate over the v
able t8 using thed functions, but as we shall see in the ne
section, this must be done with some care.

We end this section with a discussion of the physi
quantities that one can obtain fromZ. It is important to re-
alize that the restricted partition function itself is not a phy
cal quantity. In order to be meaningful, it must be norm
ized. We therefore construct the probability density of t
directed lines via

P~x,t !5
Z~x,t !

*ddx8Z~x8,t !
. ~5!

For future convenience we denote byP0(x,t) the probability
density of a directed line in the absence of any external
tential ~which is actually equal to the diffusion equatio
Green function!. One may also define a local ‘‘free energy
via

f ~x,t !52T ln@Z~x,t !#. ~6!

We use the term ‘‘free energy’’ guardedly, since this qua
tity, as defined above, is not extensive~in terms of the length
t of the lines!. It is, however, a useful measure of the energ
entropy balance for a given end-point valuex. For instance,
if one choosesV to be a columnar potential~which exists
only for x50), then f (0,t) is a sensitive measure of a boun
line (f;t), as opposed to an unbound line@generally
f; ln(t)#. In this paper we shall generally intuit the behavi
of the line from studying the probability density.

As a final remark, we stress that although the path-integ
and partial differential equation forms forZ bear a striking
resemblance to the Feynman path-integral and Schro¨dinger
equation descriptions of a quantum mechanical particle,
spectively, one should use caution in applying results fr
quantum mechanics to the present problem — the idea
the problems are related by a simple Wick rotation (t5 i t ) is
oversimplified. Physically, the partition function as defin
above is a positive-definite quantity. There is no analog
constraint on the complex wave function of quantum m
chanics. Also, the time evolution of the wave function
generally postulated to be continuous@16#. In the above
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55 167DIRECTED LINES IN SPARSE POTENTIALS
problem, there is no physical constraint on the continuity
the partition function as a function oft. The reason for this
difference is the following. In quantum mechanics a disco
tinuity in the time evolution of the wave function corre
sponds to a temporal discontinuity in the probability dens
of the quantum mechanical particle, which is physically u
reasonable. In contrast, the discontinuity of the partit
function breaks no physical laws. This is because the sym
t used above corresponds to thelength of the line— this is a
fixed quantity for a given line. The meaning of the rate
change of the partition function with respect tot is to take
two lines whose lengths aret andt1dt, respectively, and to
equilibrate them in identical thermal~and possibly quenche
disorder! environments; thereafter measuring the partit
function for each line. There is no reasona priori to insist on
continuity of the partition function.

These general distinctions between quantum mecha
~as expressed by Feynman’s path integral! and the statistica
mechanics of a directed line@as expressed by~1! above# will
have important consequences in the remainder of this pa

III. DISCONTINUITIES AND ‘‘GENERAL SOLUTION’’

To gain some insight into the nature of a sparse poten
let us simplify the problem to having a single potent
v(x) located at a longitudinal positiont. The integral equa-
tion for Z now takes the form

Z~x,t !5g~x,t !2E ddx8E
0

t

dt8g~x2x8,t2t8!v~x8!

3d~ t82t!Z~x8,t8!. ~7!

Obviously, for t,t we have the solutionZ(x,t)5g(x,t),
which implies P(x,t)5P0(x,t)5g(x,t). In particular,
Z2(x)[ lime→0Z(x,t2e)5g(x,t). We now go on to the
more difficult task of findingZ1(x)[ lime→0Z(x,t1e).

In taking the limit t→t care is needed when integratin
over the d function in Eq. ~7!, but the Green function
g(x2x8,t2t8)5g(x2x8,t2t) may safely be replaced b
d(x2x8) leading to

Z1~x!5g~x,t!2v~x! lim
e→0

E
0

t1e

dt8d~ t82t!Z~x,t8!. ~8!

ThereforeZ1(x)5g(x,t)1O(v), and since this also hold
for Z2(x) to this order, we may write Eq.~8! as

Z1~x!5g~x,t!2v~x! lim
e→0

E
0

t1e

dt8d~ t82t!g~x,t!1O~v2!

5g~x,t!@12v~x!1O~v2!#. ~9!

It is important to note that, while one can expand the fu
tion g aboutt5t, this is not so forZ, which can now clearly
be seen to be discontinuous at this point.

To find the higher order terms in Eq.~9!, we write
Z1(x) andZ2(x) in the unified form:

Z~x,t !5g~x,t!2v~x!E
0

t

dt8d~ t82t!Z~x,t8!, ~10!
f
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wheret5t6e,e→0. Iterating this equation gives

Z~x,t !5g~x,t!H 12E
0

t

dt8vd~ t82t!1E
0

t

dt8E
0

t8
dt9

3v2d~ t82t!d~ t92t!1•••J . ~11!

For t,t the integrals give no contribution, confirming th
result forZ2(x), and for t.t the lower limits of the inte-
grals may be taken to minus infinity andt replaced by plus
infinity, giving

Z1~x!5g~x,t!H 12E
2`

`

dt8vd~ t82t!1
1

2E2`

`

dt8E
2`

`

dt9

3v2d~ t82t!d~ t92t!1•••J , ~12!

where the symmetry of the double integral has been use
rewrite it as an integral over allt and t8, hence the factor of
1/2. Continuing this procedure one finds that

Z1~x!5g~x,t! (
n50

`
1

n! H 2E
2`

`

dt8vd~ t82t!J n. ~13!

Therefore, in the limite→0,

Z~x,t !5H g~x,t!exp@2v~x!# if t5t1e

g~x,t! if t5t2e.
~14!

From Eq.~10! it is clear that, in the limitt→t, the coor-
dinatex is simply a label and plays no significant part in th
phenomenon we have just highlighted. Therefore, some
ther insight into this effect may be gained by a study of t
zero-dimensional versions of these models. In order to
this it is useful to examine the differential equations cor
sponding to the above integral equations. The one co
sponding to Eq.~7! has the form@cf. Eq. ~2!#

] tZ~x,t !5n¹2Z2v~x!d~ t2t!Z. ~15!

The zero-dimensional version of this equation is

] tZ~ t !52vd~ t2t!Z. ~16!

It is easy to check that the integral equation correspondin
Eq. ~16! is simply Eq.~10! but with thex label absent. On
the other hand, we can in this simple case, solve Eq.~16!
directly to find:

Z~ t !5H g~t!exp~2v ! if t5t1e

g~t!exp@2vu~0!# if t5t

g~t! if t5t2e

~17!

in the limit e→0. We conclude that, while one may mea
ingfully formulate questions about the discontinuity ofZ at
t5t, the definition of the partition function is itself ill de
fined precisely at this point, depending as it does on
definition of u(0)[*2`

0 dtd(t). Of course, in a microscopic
approach, thed function would be smoothed out and th
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168 55T. J. NEWMAN AND A. J. McKANE
ambiguity would be absent. However, as far as the evolu
of Z is concerned, only its change att5t, and not its actual
value there, is relevant. So the conclusions that we draw
this paper will be independent of the precise form of a
underlying microscopic model.

Returning to the general form of the potential Eq.~3!, the
relation

Z1~x,t!5Z2~x,t!exp@2v~x!# ~18!

allows us to write a general iterative solution for the partiti
function. The idea is to split the evolution ofZ into two
parts; the first being concerned with the change inZ as the
line encounters a sparse potential, the second with the
lution of Z between potentials. We naturally define

Zn
2~x!5 lim

e→0
Z~x,tn2e!, ~19!

and also

Zn
1~x!5 lim

e→0
Z~x,tn1e!. ~20!

Directly using Eq.~18! we have

Zn
1~x!5Zn

2~x!exp@2vn~x!#. ~21!

The evolution of the partition function between potentials
easily obtained since it is nothing but thermal wandering.
therefore have

Zn11
2 ~x!5E ddx8g~x2x8,tn112tn!Zn

1~x8!. ~22!

Equations~21! and ~22! are the main results of this sec
tion and constitute an iterative solution for the partition fun
tion, in some ways analogous to the usual transfer ma
solution used in discrete lattice formulations of direct
walks@1#. Once the set of functionsZn

1 andZn
2 is known, the

partition function at intermediate values of the longitudin
coordinate may be found by quadrature from Eq.~4!.

IV. SINGLE DEFECT

In this section we solve perhaps the simplest example
sparse potential, namely, a short-ranged potential co
sponding to a single point defect, located at longitudinal
cation s5t. For convenience we choosev(y)52rD(y),
where

D~y!5~pa2!2d/2exp~2y2/a2!. ~23!

The scalea is to be regarded as the shortest transverse s
in the problem, although we shall always need to keepa
nonzero in order to regularize the theory.~Note, in the limit
of a→0, the functionD becomes a Diracd function.! The
parameterr simply represents the strength of the ‘‘defec
— for r.0 the defect is attractive, while forr,0, the de-
fect is repulsive. We can now go on to calculate the pr
ability densities.

Since the only potential in the system is that due to
single defect, we clearly haveZ2(x,t)5g(x,t), which im-
plies P2(x,t)5P0(x,t). IntegratingZ

1(x,t), as given in
n

in
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Eq. ~14!, over x in order to find the appropriate normaliza
tion leads us to an expression for the probability density
the line on the positive side of the defect. It is convenie
when discussing this quantity to introduce a leng
l5(4nt)1/2@a, which is the effective transverse wanderin
of the line between the origin and the defect, and then
form appropriately scaled versions ofr and l by defining
r*5r/(pa2)d/2 and l *5 l /a. One then finds that

P1~x,t!5P0~x,t!H ~ l * !dexprD~x!

er*1~ l * !d21 J . ~24!

Looking at the short-range form of this expression it is im
mediately clear that

P1~0,t!

P0~0,t!
;H ~ l * !der*

er*1~ l * !d21
J , ~25!

while for uxu→` we have

P1~x,t!

P0~x,t!
;H ~ l * !d

er*1~ l * !d21 J . ~26!

Examination of these expressions for the relative disc
tinuity of the probability density reveals the following e
fects:

Attractive weak defectr.0 and r5O(ad): In this case
r*5O(1), andsincel *@1, the short-range discontinuity o
the probability density@as given by Eq.~25!# is of order
unity, while the long-range discontinuity@as given by Eq.
~26!# is of negligible size.

Attractive strong defectr.0 and r5O(1): The situa-
tion is markedly different here: for smalluxu, P1@P0 and
for largeuxu, P1!P0. The two probability densities becom
equal at some critical value ofuxu which is much smaller
thana.

Repulsive defectr,0: The conclusions for weak repu
sive defects are exactly as for weak attractive defects.
strong repulsive defectsP1!P0 at short range and
P1'P0 at long range.

These results can be summarized by saying that at l
range~in practice foruxu.a) weak attractive defects and a
repulsive defects have no effect. But a strong attractive
fect does have a global effect on the probability density
the directed line, at the longitudinal locationt.

We shall briefly consider the form of the probability de
sity for t.t. To do this we write down an integral equatio
of the form Eq. ~7!, but with initial time t1 . Using
Z1(x,t), as given by Eq.~14!, we find

P~x,t !

P0~x,t !
'

~ l * !d1F~x,t !~er*21!

~ l * !d1er*21
, ~27!

where

F~x,t !5
1

~12g!d/2
expF2

x2

4nt2
t

~12g!G ~28!

and where we have definedg(t)5t/t.
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55 169DIRECTED LINES IN SPARSE POTENTIALS
Let us examine the consequences of this result for tim
significantly greater thant; i.e., we takeg!1. Firstly, we
note that the effect of the defect upon the probability den
is negligible, if the defect is repulsive or attractive and we
since the quantity (l * )d dominates in both the numerator an
denominator of Eq.~27!. The situation is again more inter
esting when we consider a strong attractive defect. It is n
the quantityer* that dominates, at least for small enou
x. Therefore, the healing of the distribution function
x50 follows (P/P0)x50;F(0,t);11dt/2t. For transverse
distanceuxu being large@actually uxu@t(n/t)1/2#, the healing
does not occur except at extremely large longitudinal d
tances; the relative difference in the probability dens
~compared to the free case! satisfying (P/P0)x5`

;( l * )de2r* . There will exist a scaleL(t) at which the ratio
of P to P0 is exactly unity, given byF(x,t);1. From Eq.
~28! we findL(t)5(2dnt)1/2.

So, to summarize the results for the simple situation o
single localized defect of strengthr, we find that there is a
qualitative difference between attractive and repulsive
fects. In the former case, there exist two classes of defec
weak and strong — which are distinguished by their eff
upon the probability density, this effect being local and g
bal, respectively. In the latter case~repulsive defect!, we find
that for any strength of defect, the effect upon the probabi
density is always local. The extreme asymmetry in effect
positive and negative localized defects will be seen to h
interesting consequences in the next two sections in wh
we consider infinite arrays of defects. Since the effect o
repulsive defect upon the line is qualitatively the same
any strength of defect, we shall not distinguish betwe
weak and strong repulsive defects. In the following sectio
we shall generally take the strength of the repulsive defec
be of order unity.

V. PERIODIC COLUMNAR POTENTIAL I

In this section we shall consider a more complicated s
ation, namely, an infinite periodic array of localized defe
located on the column defined byx50. We henceforth re-
strict our attention to~211! dimensions. This shares the a
tractive features of being both the most physically interest
case as well the most analytically tractable — a rare coinci-
dence. Choosingt to be the longitudinal separation betwe
the defects, andr to be their strength, we consider a potent
of the form

V~y,s!52r (
n51

`

D~y!d~s2tn!, ~29!

where we adopt the Gaussian envelope form~23! for the
short-range functionD. The range of the potentials is o
O(a), which we take to be the smallest transverse scale
the problem. In particular we havea! l wherel5(4nt)1/2 is
the effective transverse wandering of the line between
fects. All results will be derived to leading order ina; the
fact that the transverse scale of the functionD(x) is of
O(a) allows us to frequently implement it as a Diracd func-
tion to get results to this order. We have chosen all the
fects to have the same strengthr, which we can take to be
s
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either positive~attractive defects! or negative~repulsive de-
fects!. In the next section we shall study an analogous s
ation, but with alternating attractive and repulsive defects

Taking the general iterative solution as given in Eqs.~21!
and ~22! and substituting the explicit form for the potenti
above yields the relations

Zn11
2 ~x!5E ddx8g~x2x8,t!Zn

1~x8!, ~30!

and

Zn
1~x!5Zn

2~x!exp@rD~x!#. ~31!

Combining these two results and implementingD as a Dirac
d function wherever possible we find

Zn
2~x!5

Zn21
2 ~0!

D~0!
g~x,t!@erD~0!21#

1E ddx8g~x2x8,t!Zn21
2 ~x8!

5
Zn21

2 ~0!

D~0!
g~x,t!@erD~0!21#1E ddx8

3g~x2x8,2t!Zn22
2 ~x8!exprD~x8!. ~32!

Repeating this procedure leads us to

Zn
2~x!5g~x,nt!1R(

m51

n21

g@x,~n2m!t#Zm
2~0!. ~33!

whereR is defined by

R5
erD~0!21

D~0!
. ~34!

It is convenient at this point to definecn5Zn
2(0), along with

f n5g(0,tn)51/(pnl2). Settingx50 in the above equation
then gives

cn5 f n1R(
m51

n21

f n2mcm . ~35!

This discrete equation may be solved exactly by making
of a generating function. The details of the calculation a
relegated to Appendix A. The resulting form forcn depends
on whether defects are attractive or repulsive. Thus we c
sider these two cases separately.

A. Attractive defects

From Appendix A, the asymptotic~i.e., n@1) result for
cn takes the form

Rcn;F e21/R8

R8~12e21/R8!
GexpFn lnS 1

12e21/R8D G , ~36!

whereR85R/p l 25@er*21#/( l * )2. So, for anyr.0, the
partition function, evaluated at a defect site, grows expon
tially; but with a rate that vanishes exponentially fast f
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170 55T. J. NEWMAN AND A. J. McKANE
small r. In order to obtain the physically meaningful pro
ability density, we must normalize the partition functio
Generally, the normalization is defined asN(t)
5*ddxZ(x,t). In particular, we define

Nn5 lim
e→0

N~tn2e!. ~37!

Then by integrating Eq.~33! over the transverse space w
obtain

Nn511R(
m51

n21

cm , ~38!

which on evaluating the sum gives, for largen,

Nn;~1/R8!expFn lnS 1

12e21/R8D G . ~39!

Dividing the partition function Eq.~36! by this normalization
~39! yields the asymptotic form for the probability density
thenth defect:

Pn~0![ lim
e→0

P~0,tn2e!;
e21/R8

R~12e21/R8!
. ~40!

From this result we see that for anyr.0, the probability
density on the column~actually on a defect site! attains a
nonzero, constant value asn→`. This indicates that the line
is alwaysbound to the array of defects, regardless of ho
weakly attractive they are, or how widely separated.

It is interesting to calculate the probability density on t
column, but in between the defects. This may be direc
evaluated by making use of Eq.~4!. Settingt5t(n1u) with
uP(0,1# we find the asymptotic result

P~0,t !;
R8e21/R8

R~12e21/R8!u
Fu„2 ln~12e21/R8!…, ~41!

where

Fu~p![E
p

`

du
e2uu

~12e2u!
. ~42!

On settingu51, the above expression reduces to the asym
totic result for defect sites, as given by Eq.~40!.

In the limit of very strong attractive defects, the probab
ity density along the column has the for
P„0,(n1u)t…5(up l 2)21 for 0,u<1. The density takes its
largest value on the positive side of the defect, and t
decays as 1/u until the next defect is reached (u51!.

We also note that in the limit of vanishing defect streng
P(0,t) reduces to the same form for both defect sites, a
positions in between. Explicitly one has

P~0,t !;e2~ l* !2/r* /r, r*!1, t@t. ~43!

In the sense that the array binds the line for anyr.0, we
may say that it acts in precisely the same way as a cons
energy column~CEC!, which is attractive@8,11,12#. In that
case, one has a potential of the formV(y,s)52 r̄D(y). The
y

p-

n

d

nt

asymptotic form of the probability density on the column, f
vanishingly smallr̄, takes the form

P~0,t !;e21/r̃ /a2r̃, ~44!

where r̃5 r̄/(4pn). Comparing these results, we see th
concerning the dominant exponential behavior, there is
effective renormalization of the defect strength, such tha
appears as the strength of a CEC. The precise form of
renormalization isr̄5r/t, which is an intuitively appealing
result.

B. Repulsive defects

The solution to this discrete equation for the partiti
function is outlined in Appendix A, along with details of th
evaluation of the normalization. On dividingcn by Nn , we
obtain the probability density at a defect site. We find it
have the asymptotic form

Pn~0!5$np l 2~R8!2@ ln~ne1/uR8u!#2%21

5H @np l 2#21, 1!n!e1/uR8u

@p l 2~R8!2n@ ln~n!#2#21, n@e1/uR8u.
~45!

So in the deep asymptotic regime, the probability density
defect location decays asPn(0);$n@ ln(n)# 2%21. Again, it is
interesting to compare this result to that obtained for the c
of a CEC ~this time with repulsive energy!. Following the
methods of Ref.@12# one may ascertain that for the CEC
P(0,t);@ t ln(t)#21 in the asymptotic regime. It therefore ap
pears as if the defects repel the line more effectively tha
CEC; which is counterintuitive. The situation may be cla
fied by calculating the probability density in between t
defects, i.e., takingt5t(n1u) with n@1. This may be done
by making use of Eq.~4! with the result that

P~0,t !;
1

t F11OS 1

ln~ t ! D1OS 1

u@ ln~ t !#2D G . ~46!

This is the asymptotic behavior of a free line. Therefore
repulsive array has no qualitative effect upon the probabi
density except right at the defect positions. The decay
P(0,t) for the CEC is marginally faster than a free line, b
marginally slower than that of a line constrained to pa
through a defect — this is an intuitively acceptable result.
contradistinction to the case of attractive defects, there is
effective renormalization of the defects into a CEC wh
they are repulsive.

VI. PERIODIC COLUMNAR POTENTIAL II

In the last section we have seen that there exists a g
difference between an infinite array of attractive defects, a
an infinite array of repulsive defects. In the former case,
line is bound to the array; and for small values of the pot
tial energy, the array acts precisely in the same manner
CEC. In the latter case, the line is oblivious to the column
which the array is defined, except directly at defect sites
that case, the probability density is marginally reduc
There is no relation between the repulsive array, and a re
sive CEC. One may ask how the line acts when the ar
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55 171DIRECTED LINES IN SPARSE POTENTIALS
consists of both attractive and repulsive defects. In fact
initial motivation was to study the case of a random adm
ture of such defects along the column. However, this sim
example of a disordered potential is extremely difficult
analyze. A simpler task is to arrange the attractive and re
sive defects in an alternating pattern along the column.
physics of such a system has attracted much interest rec
@13,14#, albeit in a microscopic formulation in terms of th
RSOS model. Our presentation in this section will be rat
brief as most of the calculation may be constructed using
methods of the past two sections. Also, we shall cont
ourselves with only examining the gross features of this s
tem; namely, the location of the binding-unbinding tran
tion, and the qualitative behavior of the critical properties
the line and the bound phase.

Denoting the strength of the attractive defects byr.0,
and that of the repulsive defects by2s,0, we consider the
set of sparse potentials

V~y,s!52r (
n51

`

D~y!d~s22nt!

1s (
n51

`

D~y!d„s2~2n21!t…. ~47!

Following a similar procedure to that used in the previo
section we may derive a closed equation for the partit
function at a defect site. In this case there is the minor co
plication of having two types of defects, which may be eas
accommodated in the following way. We denote the partit
function at attractive and repulsive defect sites bycn

E and
cn
O , respectively:cn

E[Z2n
2 (0) andcn

O[Z2n21
2 (0) @the indi-

cesE andO represent ‘‘even’’ and ‘‘odd’’~in terms of sites
2n and 2n21!#. To derive the iterative equation for thes
quantities, one uses the fundamental relations~21! and ~22!
and follows a similar procedure to that described in the p
vious section. This leads to the following simultaneous eq
tions:

cn
E5 f 2n1R(

m51

n21

f 2n22mcm
E2S(

m51

n

f 2n22m11cm
O,

cn
O5 f 2n211R(

m51

n21

f 2n22m21cm
E2S(

m51

n21

f 2n22mcm
O ,

~48!

whereR is given by Eq.~34! and

S5
12e2sD~0!

D~0!
. ~49!

We shall relegate the explicit solution of these equatio
to Appendix B. The main result to emerge from this soluti
is the shifting of the binding-unbinding transition to a critic
line in the (r,s) plane which is illustrated in Fig. 1. Th
precise equation for this line is given in Eq.~B12!, but the
general structure takes the form
r
-
le

l-
e
tly

r
e
t
s-
-
f

s
n
-
y
n

-
-

s

s5H r, if r!rc

2pa2lnS rc2r

pa2 D , if r→rc ,
~50!

whererc5pa2ln2. It is interesting to note that forr.rc the
line is always bound, regardless of the strength of the rep
sive sites. This result is in qualitative agreement with t
recent work from the Fribourg group@13,14#. This physics
may have been intuitively expected following the analysis
the single defect, where the vast difference of effect betw
attractive and repulsive defects was examined in detail
the terminology of Sec. IV, we may say that strong attract
defects will always bind the line, whereas weak attract
defects require a critical strength in order to do this. There
no analogy of ‘‘weak’’ and ‘‘strong’’ for repulsive defects.

Some further details are examined in Appendix B, whi
we shall summarize here. Firstly one may examine the
havior of the line at criticality. In this case one finds that t
probability density of the line at a defect site~attractive or
repulsive! follows the asymptotic behavior of a free line
namely,P(0,nt);1/n. One may also study the bound sta
in which case one finds that the probability density satura
to a constant at both attractive and repulsive defect si
although the density is a factor of (1/l * )2 smaller at the
repulsive defect sites. One then has the picture that, altho
the line is bound, it really binds only to the attractive defec
and has a vanishingly small probability density at the rep
sive defect sites. Having gleaned the main qualitative asp
of the alternating column, we shall end this section here
proceed to presenting our conclusions.

VII. CONCLUSIONS

In this paper we have examined a class of models
scribed as ‘‘a directed line in the presence of sparse po
tials,’’ with the understanding that a sparse potential is
d-dimensional potential defined at a single longitudinal loc
tion. In Sec. III we obtained a general iterative solution f
the partition function that consisted of two pieces: fr
propagation between potentials, and a discontinuity wh

FIG. 1. The phase diagram in the (s,r) plane. The critical line
separating unbound and bound phases is given by Eq.~50!.
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172 55T. J. NEWMAN AND A. J. McKANE
passing through a potential. In Sec. IV we considered
some detail a single short-ranged sparse potential that c
sponds to a single defect. The probability density of the l
was evaluated for both attractive and repulsive defects. In
former case, the density was seen to undergo a global
continuous change for strong defects, and the healing of
density~i.e., the relaxation to the density of a free line! was
found to be incomplete for arbitrarily large longitudinal di
tances above the defect. The latter case of a repulsive d
was completely different in that for any strength of defe
the density of the line is undisturbed except within a sm
region about the defect.@As a brief aside we may relate th
extreme asymmetry to the behavior of a nonequilibrium
terface evolving under the Kardar-Parisi-Zhang~KPZ! equa-
tion @6#. Under the mapping between directed lines and
KPZ equation, an attractive~repulsive! defect corresponds to
an upward~downward! force, acting for a short duration
upon the surface. It has been previously observed@12,18#
that in the strong-coupling regime of the KPZ equation,
upwards force of sufficient strength may seed a large dis
bance in the interface, which then becomes effectively f
zen. Alternatively, a downward force of arbitrarily larg
strength plays no role, since any disturbance it cause
quickly eradicated by the strong upward action of the K
nonlinearity. The behavior of the directed line under the
fluence of a single defect is seen to exhibit an analog
effect. The possibility of gaining intuition concerning th
strong-coupling behavior of the KPZ equation is a prim
example of the usefulness of studying nontrivial, yet tra
table, directed line models of the type considered in t
paper.#

In Sec. V we studied a periodic array of defects arrang
on a column, exclusively in~211! dimensions, which is of
most interest. For attractive defects, the line was found to
asymptotically bound, and indeed, the saturated form of
probability density along the column~for vanishingly weak
potentials! was found to correspond to that obtained pre
ously for a CEC, indicating that the line samples the defe
in such a way as to renormalize their effect to be that o
CEC. For an array consisting of repulsive defects, we fou
that the density along the column is qualitatively unchang
from that of a free line, i.e.,P;1/t. This result is logarith-
mically modified at the defect positions, having the for
P;1/@ t ln2(t)#. There is no relation of these results to a r
pulsive CEC where one hasP;1/@ t ln(t)#, indicating that the
sampling of the defects by the line does not have a renorm
izing, or smoothing effect.~The fact that the line may be
bound by an array of attractive defects has a novel impl
tion for the KPZ equation; namely, that a sequence of d
crete upward impulses is sufficient to move the interfa
with nonzero velocity, similar to the effect of pushing with
constant force@12#!. In the last section we examined an arr
consisting of alternating attractive~with strengthr.0) and
repulsive ~strength2s,0) defects. It was found that th
binding-unbinding transition is shifted to a location in th
(s,r) phase plane defined by the condition given in Eq.~50!.
This result is interesting as it indicates that for attract
defects of strength greater than the critical stren
rc5pa2ln(2), the line will always be bound, regardless
the strength of the repulsive defects. This latter result is
accord with recent calculations on an equivalent microsco
n
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RSOS model@13,14#. The asymptotic behavior of the line a
criticality was found to be simply that of a free lin
@P(0,nt);1/n#. In the bound phase the line was found to
essentially bound to the attractive defects, the density at
repulsive defects being smaller by a factor of (1/l * )2.

We feel that the introduction of sparse potentials int
duces some simplifying features into the study of direc
lines. In the current paper we have examined probably
simplest form for these potentials, namely, single defe
and periodic arrays of defects; although even for th
simple periodic arrays there are many more features that
be examined, such as the spatial variation of the probab
density away from the column, and the behavior of the s
tem in dimensions other than~211!. One may also retain the
simplifying nature of a periodic array of sparse potentia
but relax the condition used in this paper that the potent
are short ranged in the transverse directions. For instanc
would be of interest to study potentials that were periodic
the transverse dimensions, as one may then make conta
systems in which a directed line is interacting with a set
crystal layer potentials. Part of our motivation for examini
sparse potentials was to see if analytic progress is poss
for simple types of disorder — such as randomly plac
defects, or regularly placed defects with random energy.
certainly regard such analyses as worthwhile and poss
projects for the future.
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APPENDIX A

In this Appendix we outline the solution of the recurren
relation for the partition function evaluated at the defe
sites,cn . This is given by Eq.~35!:

cn5 f n1R(
m51

n21

f n2mcm . ~A1!

The solution is most easily obtained by introducing the g
erating function

c̄~z![ (
n51

`

zncn , ~A2!

along with a similar functionf̄ (z) defined in terms of$ f n%.
Summing~A1! overn with the appropriate weight then give

c̄~z!5
f̄ ~z!

@12R f̄~z!#
. ~A3!

Inverting the relation~A2! using the calculus of residues the
yields the solution

cn5
1

2p i RC1
dz

zn11 c̄~z!5
1

2p iR R
C1

dz

zn11

1

@12R f̄~z!#
,

~A4!
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55 173DIRECTED LINES IN SPARSE POTENTIALS
where the contourC1 is a closed circle of radiusd; this circle
is chosen so that no other singularities are enclosed bar
nth order pole at the origin.

The function f̄ (z) is easily evaluated to be

f̄ ~z!5~p l 2!21(
n51

`
zn

n
52~p l 2!21ln~12z!, ~A5!

where the sum is guaranteed to converge sinceuzu,d!1. It
is the ease with which this sum may be evaluated
(211) dimensions that makes this case the most analytic
tractable. DefiningR85R/(p l 2), we have the explicit form
for cn as

cn5
1

2p iR R
C1

dz

zn11

1

@11R8ln~12z!#
. ~A6!

Examination of the integrand reveals that there exist t
singularities in the complex plane apart from the pole at
origin. These are a branch point atz51 along with a simple
pole at

zp512exp~21/R8!512expH 2
~ l * !2

er*21 J . ~A7!

By cutting the contourC1 on the negative real axis, we ma
wrap it around the rest of the complex plane as illustrated
Fig 2. In this way, we have

R
C1

1E
cut

1~residue atzp!50.

We have thus replaced the essentially perturbative exp
sion ~A6! by an expression that enables us to extract
strong-coupling behavior, if it exists~this actually depends
on the existence of a pole at radiusd,uzu,1!.

Whether the residue from the pole atzp dominates over
the contribution from the branch cut depends on the value
uzpu. It is clear from the form of the integrand that the int
gral will be dominated~for large n) by the pole if it lies
within the unit circle. From Eq.~A7! it follows that

FIG. 2. The singularity structure in the complexz plane for the
evaluation ofc̄(z). Also illustrated is the deformation~solid line! of
the original contourC1 ~dashed line.!
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zp,12exp(l* )2 if the defects are repulsive and 0,zp,1 if
the defects are attractive. Thus for attractive defects the p
dominates and a calculation of the residue leads directly
Eq. ~36!.

In the case of repulsive defects, the pole is seen to lie
the negative real axis far outside the circleuzu51. Thus the
residue atzp yields only an exponentially decaying contribu
tion and is subdominant to the contribution from the cut. W
therefore haverC1

;2*cut, which has the explicit form

cn;
1

p l 2E0
` dx

~11x!n11 H 1

~pR8!21~11R8lnx!2 J . ~A8!

Referring to Eq.~38! we may express the normalization
integral form. Explicitly one finds

Nn;11R8E
0

`dx

x H ~11x!n21

~11x!n11 H 1

~pR8!21~11R8lnx!2 J .
~A9!

We shall briefly describe the asymptotic evaluation of E
~A8!. The integral form of the normalization~as well as the
similar integrals that appear in the evaluation ofP(0,t) for
tÞnt) may be done in an analogous fashion. So referring
Eq. ~A8!, as a first step we scalex by n, and use the relation
exp(p)5limn→`(11p/n)n. We then have

cn;
1

np l 2~R8!2
E
0

`

dx e2xH 1

p21@ ln~x/b!#2 J , ~A10!

whereb5ne21/R8.ne( l* )
2
@1. We now split the integration

range into three regions and estimate the order of magni
of the integral in each region. Region~i! is defined by
0,x,1/b, and retaining only dominant terms for smallx,
we find ~up to prefactors! cn

( i );@b ln2(b)#21. Region~ii ! is
defined by 1/b,x,b. In this region we may drop ln(x) in
comparison to ln(b), which givescn

( i i );@ ln2(b)#21. Region
~iii ! is defined byx.b in which casecn

ii i ;e2b. So clearly
the contribution from region~ii ! dominates for largen. In a
similar way, one may establish that the normalization has
asymptotic form ofNn;O(1)1O@1/ln(n)#. Putting these re-
sults together gives the form of the probability density sho
in Eq. ~45!.

APPENDIX B

In this Appendix we outline the solution of the simulta
neous iterative equations~48!. As before, it is convenient to
use generating functions. Thus we define the functions

c̄E~z![ (
n51

`

z2ncn
E , c̄O~z![ (

n51

`

z2n21cn
O . ~B1!

We also define

f̄ E~z![ (
n51

`

z2nf 2n , f̄ O~z![ (
n51

`

z2n21f 2n21 . ~B2!

Summing the iterative equations over the appropriate we
and using the above definitions yields the algebraic equat
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c̄E~z!5 f̄ E~z!1R f̄E~z!c̄E~z!2S f̄O~z!c̄O~z!, ~B3!

c̄O~z!5 f̄ O~z!1R f̄O~z!c̄E~z!2S f̄E~z!c̄O~z!, ~B4!

which may be readily solved, yielding the solutions

c̄E~z!5
f̄ E~z!1S@ f̄ E~z!22 f̄ O~z!2#

12~R2S! f̄ E~z!2RS@ f̄ E~z!22 f̄ O~z!2#
, ~B5!

and

c̄O~z!5
f̄ O~z!

12~R2S! f̄ E~z!2RS@ f̄ E~z!22 f̄ O~z!2#
. ~B6!

From the particular form off n , we also have

f̄ E~z!52
1

2p l 2
ln~12z2!, ~B7!

and

f̄ O~z!52
1

2p l 2
lnS 12z

11zD . ~B8!

Given the definition of the generating functions, we m
retrieve the original partition functions using

cn
E5

1

2p i RC1
dz

z2n11 c̄E~z!, cn
O5

1

2p i RC1
dz

z2n
c̄O~z!,

~B9!

where as beforeC1 is a circle enclosing the origin of smal
enough radius such that it encloses no singularities other t
the pole at the origin.

We now examine the singularity structure in the compl
z plane. Firstly we note that there now exist two bran
points at z561, which we connect to infinity with cuts
along the real axis as shown in Fig. 3. Also, any pole th
may exist within the unit circle will have a twin reflecte
through the origin due to fact that the denominators of t
generating functions are even functions ofz. As before we

FIG. 3. The singularity structure in the complexz plane for the
evaluation ofc̄E(z) and c̄O(z). Also illustrated is the deformation
~solid line! of the original contourC1 ~dashed line.!
an

x

t

e

replace the perturbative expression by the nonperturba
one by cutting the contourC1 and extending around the sin
gularities in the complex plane. This is illustrated in Fig.
and leads us to the expression

R
C1

1E
- cut

1E
1 cut

1 (
z56zp

~residues!50.

The existence of a bound state will arise only from the
being a pole within the unit circle. We thus examine t
zeroes of the denominator of the generating functions —
the positions of the poles are solutions of

11
1

2
~R82S8!ln~12z2!2R8S8ln~11z!ln~12z!50,

~B10!

where we have definedR85R/(p l 2), as before, and simi-
larly S85S/(p l 2). We analyze this equation by first notin
that if r grows witha more slowly thana2, in particular if
r5O(1), then there is no solution for anys. On the other
hand, if r grows likea2, or faster, then so doR andS and
the final term in Eq.~B10! plays only a subdominant role
Therefore the poles are situated at6zp , with

zp5F12expS 2
2

~R82S8! D G
1/2

. ~B11!

As we vary the parametersr ands, the poles exist within
the unit circle only whenR8.S8. Therefore there is a critica
line in the (r,s) plane that separates the region where po
exist from the region where they do not, which has the eq
tion R85S8. A more precise equation for this line may b
obtained by including the final term in Eq.~B10! in the
analysis by substitutingzp512e into the equation and solv
ing it in the limit e→0. The resulting condition for criticality
is now

S85
R8

112 ln2R8
. ~B12!

The right-hand side is a monotonically increasing function
R8, which reaches the value (l * )22 ~corresponding to
s→`) when r5pa2ln2[rc . The general features of th
critical line are now easy to find: a linear regime near t
origin and a logarithmic approach torc from below. This
behavior is summarized in Eq.~50! and illustrated in Fig. 1.

In order to examine the behavior of the line at criticalit
we insert the critical condition~B12! into the expressions fo
the generating functions. One then finds that to leading or
c̄E(z)5 f̄ E(z) and c̄O(z)5 f̄ O(z), which directly gives the
partition function at the defect sites with no integration r
quired; i.e., we have

cn
E51/~2np l 2!, cn

O51/@~2n21!p l 2#. ~B13!

The appropriate normalization factors may be derived
an analogous way to that described in Sec. V. Explicitly o
defines

Nn
E5 lim

e→0
E ddx Z~x,2nt2e!, ~B14!
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and

Nn
O5 lim

e→0
E ddx Z@x,~2n21!t2e#. ~B15!

These functions then satisfy the relationsNn
E5Nn

O , and

Nn
E511R(

m51

n21

cm
E2S(

m51

n

cm
O . ~B16!
J.
At criticality these functions are asymptotically constan
that along with the results for the partition functions~B13!
lead to the asymptotic form of the probability density follow
ing P(0,nt);1/n.

In order to examine the bound state one may simply
nore the subdominant contributions from the cuts, and ev
ate the residues of the poles at6zp . No explicit details of
this calculation are given here as it may easily be rec
structed from the analogous case examined in Appendix
s.
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