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Directed lines in sparse potentials
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We present a continuum formulation of @ 1)-dimensional directed line interacting with sparse potentials
(i.e., d-dimensional potentials defined only at discrete longitudinal localiohs.iterative solution for the
partition function is derived. The impulsive influence of the potentials induces discontinuities in the evolution
of the probability densityP(x,t) of the directed line. The effects of these discontinuities are studied in detalil
for the simple case of a single defect. We then investigate sparse columnar potentials defined as a periodic
array of defects in (2 1) dimensions, and solve exactly fér. A nontrivial binding-unbinding transition is
found.[S1063-651X97)04101-9

PACS numbes): 05.40+j, 03.65—~w, 68.35.Rh, 36.20-r

I. INTRODUCTION nontrivial behavior of the line, especially as a function of
spatial dimensio8,11,13.
The physics of directed line@r directed polymepshas In this paper we shall introduce a certain class of models

been the focus of much interest over the past two decadet)at is best described as “a directed line interacting with

This is mainly due to the very wide range of applicability of Sparse potentials.” To clarify this, consider a directed line in

these simple models to important physical processes, such &d+ 1) dimensions. We label the transverse directions by a

wetting[1], the motion of domain walls in magneig], and ~ Position vectory and the longitudinal direction by a scalar

the physics of flux lines in superconductd®. The interest S: The line generally exists in the presence of a potential

has been intensified by attempting to understand the effect of(¥.S). Our use of the term “sparse potentials” corresponds

disordered potentials in such systems. In superconductort the following form forV:

for instance, it is well known that point disorder can help to

localize the flux lines, hence allowing true superconducting

current flow; and recently, it has been realized that columnar V(y,S)=r§l vn(y)8(s— ),

defects provide an even better mechanism for pinpigAt

e el e, ne Ao of ot e OO uner at i vl of dscussn te posofs) o
. o : ?mpulses” vy, along with the functional form of the im-

spin glasseg5], nonequilibrium interface growtfi6], and

hock in fluid§ fh . . pulses themselves are left free. Specific choices for these
shock waves in fluidéin terms of the noisy Burgers equation ¢ antities may be made which then correspond to physically

[7])._A quantitatiye unde_rstan_ding_ of the_ effect of such types.qgjizable systems. For instance, taking fhg to be regu-
of disorder on directed lines is still lacking. larly spaced leads one to consider a directed line interacting
Aside from these important applications, the model of ayjth a set of layer potentials, as might be found in a regular
single directed line interacting with an external potential is Ofcrystal. Alternatively, one may take tHer,} to be drawn
substantial interest in its own right. There has been a greadtom some distribution function, which along with taking
deal of work on the purely theoretical front in trying to un- ,,_(y)~ 8(y—vy,), corresponds to a directed line interacting
derstand these systems, with approaches ranging from lattiggith a very dilute set of point defects, as may be realized in
RSOS(restricted solid-on-soliddescriptiong1], to powerful  an “almost-pure” superconducting single crystal.
renormalization group studief8], and phenomenological Towards the end of the paper, we shall be interested in a
scaling argumentg9]. As indicated above, what is still lack- specific subclass of sparse potentials, namely, periodic co-
ing is a systematic way of treating strongly disordered polumnar arrays of point defects, where exact solutions are
tentials; although much progress may be madélinl) di- possible in the physically relevant case of+{2) dimen-
mensions[1,10. The overwhelming difficulties present in sions. Before such specialization, we concern ourselves with
the analytic study of directed polymers may be countered t@ more general analysis of the continuum theory of sparse
some degree by simplifying some aspects of the problenpotentials. An important point is that the sparse potentials
without trivializing the physics. One possibility is to simplify have an impulsive action on the probability density of the
the form of the external potential. For instance, the problentdlirected line, leading to discontinuities in this function.
of bulk disorder is of enormous interest, but completely in-Along with this effect, is the physical constraint that the
tractable abové1+1) dimensions. One may then consider discontinuity in the density must never be such as to make
simpler scenarioésuch as a very dilute limit of point defects, the density negative. The short-scale consistency of the
or columnar disorderwhere controlled analytic calculations theory at these impulses will be seen to have dramatic effects
may provide precious insight. In fact, such is the richness obn the global properties of the probability density of the line.
the physics of directed lines, that even for the simple ex- The outline of the remainder of the paper is as follows. In
ample of a nondisordered columnar potential, there existthe next section, we provide a general continuum formula-

o
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tion of the problem following the standard methods of a At this point we specialize to the system of interest, i.e.,
path-integral description. Section Il is concerned with con-the case wher& represents a set of sparse potentials. Ex-
structing an iterative solution for the partition function for a plicitly we write

given set of sparse potentials, due account being taken of the

discontinuous nature of this function. In Sec. IV, we concen-

trate on the simple case of a single sparse potential that is V(y,S)=n§1 Un(y)6(s—7,), 3
taken to be very short ranged in the transverse directions

(i.e., approaching @ function) This corresponds to a single \yhere{r,} represent the longitudinal locations of the poten-

point defect, and is exactly solvable. Simple as it may betja|s {1 (y)}. As a final step we integrate ER) using the
this case reveals the subtlety of the discontinuous nature @freen  function of the diffusion equationg(x,t)

the probability density and allows us some intuition into the:(47rvt)*d’2exp(—x2/4ut), which yields an integral equa-
qualitative difference of effects between attractive defectsjgn for z of the form

(whose effect may be globaand repulsive defectévhose

effect is always local.In Secs. V and VI we concentrate on t

the case of a periodic array of potentials, each of which is Z(X,I)ZQ(X,I)—f ddx’f dt'g(x—x’",t—t")

taken to be short ranged — this is essentially a columnar 0

array of point defects. Section V sets out the solution to the *

case of all the defects being either attractive or repulsive, X 2 vo(X") St — 1) Z(x" ). 4
while Sec. VI is concerned with the solution to the case of n=1

alternating positive and negative defects. We restrict our at-
tention to the physically relevant case of{2) dimensions,
which by good fortune is the most analytically tractable.
Comparison is made between our results for these mode W d thi ’ ith a di . f the phvsical
and recent investigations of related microscopic models e en IS section with a discussion of the pnysica

[13,14). We end the paper with our conclusions and a dis_qqantities that one can obt_a_in fromn I.t is_impo_rtant to re- .
cus'sion of extensions to the present work alize that the restricted partition function itself is not a physi-

cal quantity. In order to be meaningful, it must be normal-
ized. We therefore construct the probability density of the

)

It appears to be a simple matter to integrate over the vari-
ablet’ using theé functions, but as we shall see in the next
%ection, this must be done with some care.

Il. FORMULATION OF THE MODEL directed lines via
As mentioned in the Introduction, there are a number of Z(x,1)
model descriptions of directed lines, with the main difference P(x,t)= T4 x’Z,(x’ 0 (5)

being whether one chooses to work in the continuum or on a

Iattjce. In this paper we shall use a continuum _formulation,FOr future convenience we denote By(x,t) the probability
which has the ad\_/antage _that derived results will not be deaensity of a directed line in the absenc’e of any external po-
pendent upon microscopic parameters, and thus may he S e :
hoped to have some universal applicability. b[ent|al (which is actually equal to the diffusion equation

We consider a directed line in ad¢ 1)-dimensional \C/%i;een function One may also define a local “free energy
space, withy labeling thed transverse directions, argdla-
beling the longitudinal direction. We demand that the line f(x,t)=—T In[Z(x,1)]. (6)
begins at the point(,0) and ends atxt). The restricted
partition function for the line, in the presence of a potential\e use the term “free energy” guardedly, since this quan-
V(y,s) is given by tity, as defined above, is not extensiwe terms of the length

t of the lines. It is, however, a useful measure of the energy-

Z(x,t) entropy balance for a given end-point valieFor instance,

if one chooses/ to be a columnar potentidlvhich exists
fy(t)=x 1J’td dy
= expl — = -
y<0>:0Dy TJo 1"lds

only for x=0), thenf(0,t) is a sensitive measure of a bound
' line (f~t), as opposed to an unbound lifgenerally

whereT represents temperature, ards the elastic constant

for the line.

1) f~In(t)]. In this paper we shall generally intuit the behavior
Following standard methodgl5] we may rewrite this

of the line from studying the probability density.
As a final remark, we stress that although the path-integral
path integral in the form of a partial differential equation
(PDB). Explicitly one finds

2
+V(y(s),s)

and partial differential equation forms f@ bear a striking
resemblance to the Feynman path-integral and “Siohger
equation descriptions of a quantum mechanical particle, re-
spectively, one should use caution in applying results from
gquantum mechanics to the present problem — the idea that
the problems are related by a simple Wick rotaties=(t) is
HZ(X,t)=vV?Z-V(x,1)Z, (2 oversimplified. Physically, the partition function as defined
above is a positive-definite quantity. There is no analogous
with boundary conditiorZ(x,0)= 8%(x). We have defined a constraint on the complex wave function of quantum me-
diffusion constantv=T/4«, and have scale® so as to ab- chanics. Also, the time evolution of the wave function is
sorb a factor of 1. generally postulated to be continuo{6]. In the above
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problem, there is no physical constraint on the continuity ofwheret= 7= ¢,e—0. Iterating this equation gives
the patrtition function as a function of The reason for this
difference is the following. In quantum mechanics a discon-
tinuity in the time evolution of the wave function corre-
sponds to a temporal discontinuity in the probability density
of the quantum mechanical particle, which is physically un-
reasonable. In contrast, the discontinuity of the partition
function breaks no physical laws. This is because the symbol
t used above corresponds to feagth of the line—thisisa  For t<r the integrals give no contribution, confirming the
fixed quantity for a given line. The meaning of the rate ofresult forZ™(x), and fort>r the lower limits of the inte-
change of the partition function with respectttas to take grals may be taken to minus infinity andeplaced by plus
two lines whose lengths ateandt+ 6t, respectively, and to infinity, giving

equilibrate them in identical therméind possibly quenched
disordej environments; thereafter measuring the partition
function for each line. There is no reasamriori to insist on
continuity of the partition function.

These general distinctions between quantum mechanics
(as expressed by Feynman'’s path integaald the statistical
mechanics of a directed lifas expressed bil) abovdg will
have important consequences in the remainder of this papenhere the symmetry of the double integral has been used to

rewrite it as an integral over allandt’, hence the factor of

l1l. DISCONTINUITIES AND “GENERAL SOLUTION” 1/2. Continuing this procedure one finds that

t t ’
Z(x,t)=g(x,r)[1—f dt’vé‘(t’—r)-l—f olt’ft dt”
0 0 0

X028t —7) St —7)+ - - b. 11

o 1 (> o
z+(x):g(x,7)[1—J dt'v&(t'—7)+§J dt’J dt’

szﬁ(t/_T)é(t”_T)_’_'” s (12)

To gain some insight into the nature of a sparse potential, * 1 % n
let us simplify the problem to having a single potential Z+(X)=9(X,T)Z m(—f dt'v5(t'—7')] . (13
v(x) located at a longitudinal position The integral equa- n=0 " o

tion for Z now takes the form Therefore, in the limite—0,

t .
Z(X,t):g(X,t)—j ddx/f dt’g(x—x",t—t")v(x’) Z(x t):[g(X,T)eXF{_U(X)] if t=7+e€ (14

0 ' g(x,7) if t=7—¢.
Xt =nZ(X',t'). @) From Eq.(10) it is clear that, in the limit— 7, the coor-
dinatex is simply a label and plays no significant part in the
phenomenon we have just highlighted. Therefore, some fur-
ther insight into this effect may be gained by a study of the
zero-dimensional versions of these models. In order to do
this it is useful to examine the differential equations corre-
sponding to the above integral equations. The one corre-
sponding to Eq(7) has the forn{cf. Eq. (2)]

Obviously, fort<r we have the solutiorZ(x,t)=g(x,t),
which implies P(x,t)=Py(x,t)=9g(x,t). In particular,
Z=(x)=lim._oZ(x,7—€)=9g(X,7). We now go on to the
more difficult task of findingZ ™ (x)=lim._,Z(x, 7+ €).

In taking the limitt— 7 care is needed when integrating
over the & function in Eq. (7), but the Green function
g(x—x",t—t")=g(x—x',t—7) may safely be replaced by

4(x—x') leading to HZ(x,t)= PV2Z—p(X) S(t—7)Z. (15)
Z*(x)=g(x, ) —v(x)lim f7+€dt,5(t’_ NZ(xt'). ®) The zero-dimensional version of this equation is
e AZ(t)=—va(t—7)Z. (16)

ThereforeZ* (x)=g(x,7)+O(v), and since this also holds

for Z~(x) to this order, we may write Eq8) as It is easy to check that the integral equation corresponding to

Eq. (16) is simply Eq.(10) but with thex label absent. On
e the other hand, we can in this simple case, solve (E6)

ZH(x)=g(x,7)—v(X)lim f dt’ 8(t’ — 7)g(x, 7) +O(v?) directly to find:
0

e—0
—g(x, DL -0(x)+ O(w?)]. © gmexp(=v) i tmrhe
Z(t)=1{ 9(nexd—vé(0)] if t=r1 (17)
It is important to note that, while one can expand the func- g(7) if t=r—e
tion g aboutt= 7, this is not so foiz, which can now clearly
be seen to be discontinuous at this point. in the limit e—0. We conclude that, while one may mean-
To find the higher order terms in Ed9), we write  ingfully formulate questions about the discontinuity Dfat
Z"(x) andZ™ (x) in the unified form: t=17, the definition of the partition function is itself ill de-

fined precisely at this point, depending as it does on the

Z(x,t) =g(x, T)—U(X)J'tdt,5(t’—T)Z(X,t’), (10) definition of 0(0)Ef9_wdt5(t). Of course, in a microscopiq
0 approach, thes function would be smoothed out and this
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ambiguity would be absgnt. However, as far as t_he evolutiorEq. (14), overx in order to find the appropriate normaliza-
of Z is concerned, only its changetat 7, and not its actual  tion leads us to an expression for the probability density of
value there, is relevant. So the conclusions that we draw ifhe line on the positive side of the defect. It is convenient

this paper will be independent of the precise form of anywhen discussing this quantity to introduce a length

underlying microscopic model. _ | =(4v7)Y2>a, which is the effective transverse wandering
Returning to the general form of the potential E8), the  of the line between the origin and the defect, and then to
relation form appropriately scaled versions pfand| by defining
* 2yd/2 * — i
2+ (x, 1) =Z" (x, TYex —v(X)] (18 p* =pl(mas)¥< andl* =I/a. One then finds that
*\d

allows us to write a general iterative solution for the partition P*(x,7)=Py(X,7) (I*)exﬂ i (24)
function. The idea is to split the evolution & into two e’ +(1*)4-1

parts; the first being concerned with the chang& ias the
line encounters a sparse potential, the second with the evd.ooking at the short-range form of this expression it is im-

lution of Z between potentials. We naturally define mediately clear that
Z;(X)Z lim Z(X,Tn—E), (19 p+(o’7_) (|*)dep*
e—0 ~ = , 25
Po(0,7) | e +(I1*)9-1 9
and also
N _ while for |x| — we have
Z (x)=1limZ(x,m,+€). (20
° P (x,7) (I*) 6
Directly using Eq.(18) we have Pox,7) | e +(1%)4-1]"
Z, (X)=Z, (x)exg —vn(X)]. (21 Examination of these expressions for the relative discon-

. » ) . tinuity of the probability density reveals the following ef-
The evolution of the partition function between potentials isfqts:

easily obtained since it is nothing but thermal wandering. We = attractive weak defech>0 and p=0(a

9: In this case
therefore have

p*=0(1), andsincel *>1, the short-range discontinuity of

the probability densityfas given by Eq.25)] is of order

n_+1(X):f dIX'g(X—X", Thy1— T)Zt (X').  (22)  unity, while the long-range discontinuityas given by Eq.
(26)] is of negligible size.

Equations(21) and (22) are the main results of this sec- _Attractive strong defecp>0 and p=0(1): The situa-

tion and constitute an iterative solution for the partition func-ton 1S marke%y different here: for small|, P> P, and
tion, in some ways analogous to the usual transfer matrifor 1arge|x|, P™<Po. The two probability densities become
solution used in discrete lattice formulations of directed€dual at some critical value dk| which is much smaller
walks[1]. Once the set of functior! andZ. is known, the ~thana.

partition function at intermediate values of the longitudinal . Repulsive defecp<0: The conclusions fof weak repul-
coordinate may be found by quadrature from E). sive defects are exactly as for weak attractive defects. For

strong repulsive defectsP™ <P, at short range and
P*~P, at long range.
These results can be summarized by saying that at long
In this section we solve perhaps the simplest example of &ange(in practice for|x|>a) weak attractive defects and all
sparse potential, namely, a short-ranged potential correepulsive defects have no effect. But a strong attractive de-
sponding to a single point defect, located at longitudinal lofect does have a global effect on the probability density of
cation s=7. For convenience we choosgy)=—pA(y), the directed line, at the longitudinal location
where We shall briefly consider the form of the probability den-
sity for t> 7. To do this we write down an integral equation
A(y)=(ma®)~Y%exp —y?a’). (23)  of the form Eq.(7), but with initial time 7, . Using

. Z*(x,7), as given by Eq(14), we find
The scalea is to be regarded as the shortest transverse scale

IV. SINGLE DEFECT

in the problem, although we shall always need to keep P(x,t)  (I*)9+F(x t)(ep*_l)
nonzero in order to regularize the theotiote, in the limit L~ . o (27)
of a—0, the functionA becomes a Dira® function) The Po(x,1) (I*)°+e” -1

parametetp simply represents the strength of the “defect”
— for p>0 the defect is attractive, while fgr<0, the de- Where
fect is repulsive. We can now go on to calculate the prob-
ability densities.

Since the only potential in the system is that due to the
single defect, we clearly havg™ (x,7) =g(x,7), which im-
plies P~ (x,7)=Py(x,7). IntegratingZ™(x,7), as given in and where we have defined(t) = 7/t.

(28)

B 1 X2 T
F(x,t)= Wﬁex - W w
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Let us examine the consequences of this result for timesither positive(attractive defecjsor negative(repulsive de-
significantly greater tham; i.e., we takey<<1. Firstly, we fects. In the next section we shall study an analogous situ-
note that the effect of the defect upon the probability densityation, but with alternating attractive and repulsive defects.
is negligible, if the defect is repulsive or attractive and weak, Taking the general iterative solution as given in E@4)
since the quantityl¢)® dominates in both the numerator and and (22) and substituting the explicit form for the potential
denominator of Eq(27). The situation is again more inter- above yields the relations
esting when we consider a strong attractive defect. It is now
the quantitye’ that do_mlnates, at I(_eas.t for smalll epough ZE+1(X):J d%’ g(x—x',7)Z; (x'), (30)

X. Therefore, the healing of the distribution function at

x=0 follows (P/Pg)y-o~F(0,t)~1+d7/2t. For transverse
distance|x| being largeactually |x|>t(v/7)¥?], the healing
does n.ot occur except at extremely large Iong_i;udinal d_is- 25 (x)=2Z (x)exd pA(X)]. (31)

tances; the relative difference in the probability density

(compared to the free casesatisfying (P/Po)x=  Combining these two results and implementihgs a Dirac
~(I*)de‘P*. There will exist a scal&(t) at which the ratio & function wherever possible we find

of P to Py is exactly unity, given byr(x,t)~1. From Eg. B

(28) we find L(t) = (2dwvt)2 _ . Z,4(0)

So, to summarize the results for the simple situation of a Zn (0= A(0)
single localized defect of strenggh we find that there is a
qualitative difference between at'gractive and repulsive de- +f A% g(x— X", 7)Z;_1(x")
fects. In the former case, there exist two classes of defect —
weak and strong — which are distinguished by their effect 7= (0
upon the probability density, this effect being local and glo- — n-1( )g(X,T)[epA(O)_ 1]+f ddx’

and

g(x, 7)€~ 1]

bal, respectively. In the latter cagepulsive defegt we find A(0)
that for any strength of defect, the effect upon the probability , _ , ,

density is always local. The extreme asymmetry in effect of XQ(X=x",21)Z,5(x")exppA(X').  (32)
positive and negative localized defects will be seen to hav
interesting consequences in the next two sections in whic
we consider infinite arrays of defects. Since the effect of a n-1

repulsive defect upon the line is qualitatively the same for Z,()=g(x,n7)+R>, g[x,(n—m)7]Z(0). (33
any strength of defect, we shall not distinguish between m=1

weak and strong repulsive defects. In the following sections

we shall generally take the strength of the repulsive defect t’
be of order unity. erA0_q

R=—X0 (34)

epeating this procedure leads us to

hereR is defined by

V. PERIODIC COLUMNAR POTENTIAL |

Itis convenient at this point to defing,=Z, (0), along with

In this section we shall consider a more complicated situ . ] .
P f,=g(0,)=1/(7nl?). Settingx=0 in the above equation

ation, namely, an infinite periodic array of localized defects

located on the column defined by=0. We henceforth re- then gives

strict our attention tq2+1) dimensions. This shares the at- n—1

tractive features of being both the most physically interesting Yo=TF,+R E fo .- (35)
case as well the most analytically traceb} a rare coinci- m=1

dence. Choosing to be the longitudinal separation between i )
the defects, ang to be their strength, we consider a potential 1his discrete equation may be solved exactly by making use
of the form of a generating function. The details of the calculation are

relegated to Appendix A. The resulting form fgy, depends
on whether defects are attractive or repulsive. Thus we con-

V(Y,s)=—p2, A(y)S(s—mn), (290  sider these two cases separately.
n=1

A. Attractive defects
where we adopt the Gaussian envelope fd@s) for the

short-range functiom. The range of the potentials is of
O(a), which we take to be the smallest transverse scale ir’Fn

From Appendix A, the asymptoti@.e., n>1) result for
takes the form

the problem. In particular we hawe<| wherel = (4v7)*?is R

. ! . e 1
the effective transverse wandering of the line between degy, ~| —— ex;{n In(—,”, (36)
fects. All results will be derived to leading order & the R (1—e R 1-e IR

fact that the transverse scale of the functiafx) is of

O(a) allows us to frequently implement it as a Dirddunc-  where R’ = R/wl2=[e"* —1]/(1*)2. So, for anyp>0, the

tion to get results to this order. We have chosen all the departition function, evaluated at a defect site, grows exponen-
fects to have the same strengthwhich we can take to be tially; but with a rate that vanishes exponentially fast for
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small p. In order to obtain the physically meaningful prob- asymptotic form of the probability density on the column, for
ability density, we must normalize the partition function. vanishingly smallp, takes the form
Generally, the normalization is defined adN(t)

= [d9%Z(x,t). In particular, we define P(0,t)~e Y?/a%p, (44)
N,=Ilim N(mn—e). (37 wherep=p/(47v). Comparing these results, we see that
e—0 concerning the dominant exponential behavior, there is an

) . effective renormalization of the defect strength, such that it
Then by integrating Eq(33) over the transverse space We gppears as the strength of a CEC. The precise form of this
obtain renormalization ip= p/ 7, which is an intuitively appealing
n-1 result.
No 1+an2:1 Yim: 38 B. Repulsive defects
which on evaluating the sum gives, for large Th_e s_olution to _this discre_:te equation _for the_ partition
function is outlined in Appendix A, along with details of the
evaluation of the normalization. On dividing, by N,,, we
(39  obtain the probability density at a defect site. We find it to
have the asymptotic form

1
Nn~(1/R’)eX[{n m(m) .

Dividing the partition function Eq(36) by this normalization _ 2,502 VIR [\721 -1
(39) yields the asymptotic form for the probability density at Pa(0)={nal*(R")TIn(ne"1) %}
the nth defect: [nl?] L, 1<n<elR|
e IR ([ [#AR)Z[N()I2] 7Y, nseR,
(40)

(49)

Pn(O)E lim P(0,7n—¢€)~ o IR
=0 R(1-e ) So in the deep asymptotic regime, the probability density at a
defect location decays @&,(0)~{n[In(n)]% . Again, it is
interesting to compare this result to that obtained for the case
of a CEC (this time with repulsive energy Following the
methods of Ref[12] one may ascertain that for the CEC,
P(0,t)~[tIn(t)]"* in the asymptotic regime. It therefore ap-
pears as if the defects repel the line more effectively than a
CEC; which is counterintuitive. The situation may be clari-
Yied by calculating the probability density in between the
defects, i.e., taking= 7(n+ ) with n>1. This may be done
by making use of Eq(4) with the result that

From this result we see that for amy>0, the probability
density on the columractually on a defect sijeattains a
nonzero, constant value as-o. This indicates that the line
is alwaysboundto the array of defects, regardless of how
weakly attractive they are, or how widely separated.

It is interesting to calculate the probability density on the
column, but in between the defects. This may be directl
evaluated by making use of E@). Settingt=7(n+ 6) with
0 e (0,1] we find the asymptotic result

p(Ot)Nre;llR,F (_|n(1_e71/R’)) (42) P(0 1 140 1 o 1 46
) _ ’ /] 1 ~
R(1-e 1R OO~ 1*O%inw ) Ol o) |- 4O
where This is the asymptotic behavior of a free line. Therefore the
—us repulsive array has no qualitative effect upon the probability
= (p)Efmdu e (42) density except right at the defect positions. The decay of
o p o (1—e Y’ P(0,t) for the CEC is marginally faster than a free line, but

marginally slower than that of a line constrained to pass

On settingd=1, the above expression reduces to the asympthrough a defect — this is an intuitively acceptable result. In
totic result for defect sites, as given by H40). contradistinction to the case of attractive defects, there is no

In the limit of very strong attractive defects, the probabil- effective renormalization of the defects into a CEC when
ity density along the column has the form they are repulsive.
P(0,(n+ 0) 7)=(6l?) ! for 0< #<1. The density takes its
largest value on the positive side of the defect, and then VI. PERIODIC COLUMNAR POTENTIAL II
decays as ¥ until the next defect is reached€ 1).

We also note that in the limit of vanishing defect strength  In the last section we have seen that there exists a great
P(0,t) reduces to the same form for both defect sites, andlifference between an infinite array of attractive defects, and

positions in between. Explicitly one has an infinite array of repulsive defects. In the former case, the
line is bound to the array; and for small values of the poten-
p(o’t)Ne—(l*>2/p*/p, p*<1, t>r7. (43 tial energy, the array acts precisely in the same manner as a

CEC. In the latter case, the line is oblivious to the column on

In the sense that the array binds the line for any0, we  which the array is defined, except directly at defect sites. In
may say that it acts in precisely the same way as a constatitat case, the probability density is marginally reduced.
energy column(CEC), which is attractivg8,11,17. In that  There is no relation between the repulsive array, and a repul-
case, one has a potential of the foxfy,s)=—pA(y). The sive CEC. One may ask how the line acts when the array
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consists of both attractive and repulsive defects. In fact our
initial motivation was to study the case of a random admix-
ture of such defects along the column. However, this simple o
example of a disordered potential is extremely difficult to
analyze. A simpler task is to arrange the attractive and repul-
sive defects in an alternating pattern along the column. The
physics of such a system has attracted much interest recently
[13,14), albeit in a microscopic formulation in terms of the
RSOS model. Our presentation in this section will be rather
brief as most of the calculation may be constructed using the
methods of the past two sections. Also, we shall content
ourselves with only examining the gross features of this sys-
tem; namely, the location of the binding-unbinding transi-
tion, and the qualitative behavior of the critical properties of
the line and the bound phase.

Denoting the strength of the attractive defectsdiyO, P, P
and that of the repulsive defects byo<<0, we consider the

set of sparse potentials FIG. 1. The phase diagram in the,(p) plane. The critical line
separating unbound and bound phases is given by36).

BOUND

OzZzcowzcC

©

V(y,8)==p 2, A(y)d(s—2n7) o) if p<pe
(50)

= Pc—P if p—p

oo

—a?n
+a; A(y)8(s—(2n—1)7). (47)

wherep.= wa?In2. It is interesting to note that fgr> p., the

Following a similar procedure to that used in the previousline is always bound, regardless of the strength of the repul-
section we may derive a closed equation for the partitiorsive sites. This result is in qualitative agreement with the
function at a defect site. In this case there is the minor comrecent work from the Fribourg groud3,14]. This physics
plication of having two types of defects, which may be easilymay have been intuitively expected following the analysis of
accommodated in the following way. We denote the partitionthe single defect, where the vast difference of effect between
function at attractive and repulsive defect sites Jfy and  attractive and repulsive defects was examined in detail. In
¢g, respectively:wEEZEn(O) and ,pgzzz—nfl(o) [the indi- the terminology of Sec. IV, we may say that strong attractive
cesE andO represent “even” and “odd”(in terms of sites ~ defects will always bind the line, whereas weak attractive
2n and 2—1)]. To derive the iterative equation for these defects require a critical strength in order to do this. There is
quantities, one uses the fundamental relati(@# and(22)  no analogy of “weak” and “strong” for repulsive defects.
and follows a similar procedure to that described in the pre- Some further details are examined in Appendix B, which

vious section. This leads to the following simultaneous equawe shall summarize here. Firstly one may examine the be-
tions: havior of the line at criticality. In this case one finds that the

probability density of the line at a defect sitattractive or
n-1 n repulsive follows the asymptotic behavior of a free line,
E_ E_ o namely,P(0,n7)~1/n. One may also study the bound state
Yn=fant RmE:1 Fan-zmt/m SmE:l Fan-zm: 1/m in which case one finds that the probability density saturates
to a constant at both attractive and repulsive defect sites,
n—1 n—1 although the density is a factor of (1)? smaller at the
O_ E_ o repulsive defect sites. One then has the picture that, although
Un=Tan-at Rmzzl Fan-2m-19m szzl Fan—am/m: the line is bound, it really binds only to the attractive defects,
(48)  and has a vanishingly small probability density at the repul-
sive defect sites. Having gleaned the main qualitative aspects
whereR is given by Eq.(34) and of the alternating column, we shall end this section here and
proceed to presenting our conclusions.

1— e*aA(O)
S= A0 (49 VIl. CONCLUSIONS

In this paper we have examined a class of models de-

We shall relegate the explicit solution of these equationsscribed as “a directed line in the presence of sparse poten-
to Appendix B. The main result to emerge from this solutiontials,” with the understanding that a sparse potential is a
is the shifting of the binding-unbinding transition to a critical d-dimensional potential defined at a single longitudinal loca-
line in the (p,0) plane which is illustrated in Fig. 1. The tion. In Sec. Ill we obtained a general iterative solution for
precise equation for this line is given in E@B12), but the the partition function that consisted of two pieces: free
general structure takes the form propagation between potentials, and a discontinuity when
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passing through a potential. In Sec. IV we considered irRSOS mode[13,14). The asymptotic behavior of the line at
some detail a single short-ranged sparse potential that correriticality was found to be simply that of a free line
sponds to a single defect. The probability density of the lind P(0,n7)~1/n]. In the bound phase the line was found to be
was evaluated for both attractive and repulsive defects. In thessentially bound to the attractive defects, the density at the
former case, the density was seen to undergo a global digepulsive defects being smaller by a factor ofl {}7.
continuous change for strong defects, and the healing of the We feel that the introduction of sparse potentials intro-
density(i.e., the relaxation to the density of a free lineas ~ duces some simplifying features into the study of directed
found to be incomplete for arbitrarily large longitudinal dis- lin€s. In the current paper we have examined probably the
tances above the defect. The latter case of a repulsive defedfnplest form for these potentials, namely, single defects,
was completely different in that for any strength of defect,@nd periodic arrays of defects; although even for these
the density of the line is undisturbed except within a smaliSimple periodic arrays there are many more features that may
region about the defediAs a brief aside we may relate this be e>_<am|ned, such as the spatial variation of 'ghe probability
extreme asymmetry to the behavior of a nonequilibrium in-density away from the column, and the behavior of the sys-
terface evolving under the Kardar-Parisi-Zhd#@Zz) equa- €M in dimensions other thd@+1). One may also retain the
tion [6]. Under the mapping between directed lines and theéimplifying nature of a periodic array of sparse potentials,
KPZ equation, an attractiveepulsive defect corresponds to but relax the contjltlon used in this paper that the'potentlals'
an upward(downward force, acting for a short duration &€ short ranged in the transverse directions. For instance, it
upon the surface. It has been previously obseri2{1§ would be of interest to_study potentials that were periodic in
that in the strong-coupling regime of the KPZ equation, anfne transverse dimensions, as one may then make contact to
upwards force of sufficient strength may seed a large disturSyStéms in which a directed line is interacting with a set of
bance in the interface, which then becomes effectively froCTystal layer potentials. Part of our motivation for examining
zen. Alternatively, a downward force of arbitrarily large SParse potentials was to see if analytic progress is possible
strength plays no role, since any disturbance it causes #9F simple types of disorder — such as randomly placed
quickly eradicated by the strong upward action of the Kpzdefects, or regularly placed defects with random energy. We
nonlinearity. The behavior of the directed line under the in-certainly regard such analyses as worthwhile and possible
fluence of a single defect is seen to exhibit an analogouBrojects for the future.

effect. The possibility of gaining intuition concerning the

strong-coupling behavior of the KPZ equation is a prime ACKNOWLEDGMENTS
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In Sec. V we studied a periodic array of defects arrangeéiDhySICaI Science Research Council.
on a column, exclusively ifi2+1) dimensions, which is of
most interest. For attractive defects, the line was found to be APPENDIX A
asymptotically bound, and indeed, the saturated form of the
probability density along the columifor vanishingly weak o \a4i0n for the partition function evaluated at the defect
potential3 was found to correspond to that obtained previ-iiog #. This is given by Eq/(35):
ously for a CEC, indicating that the line samples the defects """ |
in such a way as to renormalize their effect to be that of a n-1
CEC. For an array consisting of repulsive defects, we found o=F R ol mibm. (A1)
that the density along the column is qualitatively unchanged m=1
from that of a free line, i.e.P~1/. This result is logarith-
mically modified at the defect positions, having the form
P~1/tIn(t)]. There is no relation of these results to a re-

In this Appendix we outline the solution of the recurrence

The solution is most easily obtained by introducing the gen-
erating function

pulsive CEC where one hd@s~ 1/t In(t)], indicating that the w
sampling of the defects by the line does not have a renormal- = n A2
izing, or smoothing effect(The fact that the line may be ¥(2) n§=:l Zn A2)

bound by an array of attractive defects has a novel implica- .

tion for the KPZ equation; namely, that a sequence of disalong with a similar functiorf(z) defined in terms of f,}.
crete upward impulses is sufficient to move the interfaceSumming(A1) overn with the appropriate weight then gives
with nonzero velocity, similar to the effect of pushing with a .
constant forc¢12]). In the last section we examined an array _ f(2)
consisting of alternating attractigvith strengthp>0) and W)= ———.
repulsive (strength— o< 0) defects. It was found that the [1=Ri(2)]
binding-unbinding transmon IS shn‘ted.t'o a !ocat!on in the Inverting the relatior{A2) using the calculus of residues then
(o,p) phase plane defined by the condition given in &6). ields the solution

This result is interesting as it indicates that for attractive’
defects of strength greater than the critical strength dz 1 dz 1
p.=ma’In(2), the line will always be bound, regardless of - _WZ): _ 35 _

the strength of the repulsive defects. This latter result is in "o2mi Je, A 2miR Je, "t [1-Rf(2)]
accord with recent calculations on an equivalent microscopic (A4)

(A3)
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|Z zp<1—expd*)2 if the defects are repulsive and@,<1 if

the defects are attractive. Thus for attractive defects the pole
dominates and a calculation of the residue leads directly to
Eq. (36).

In the case of repulsive defects, the pole is seen to lie on
the negative real axis far outside the cirtte=1. Thus the
residue at,, yields only an exponentially decaying contribu-
tion and is subdominant to the contribution from the cut. We
therefore havéc ~ — [, Which has the explicit form

1 (= dx 1
‘[’”NWL (T+0™ | (aRZ+ 1+ R ) - AP

Referring to Eq.(38) we may express the normalization in
integral form. Explicitly one finds

FIG. 2. The singularity structure in the complexplane for the o/ j”d_x (1+x)"-1f 1 }
evaluation ofi(z). Also illustrated is the deformatiasolid line) of n 0 X | (1+x)"1t [ (mR")?+ (1+R’Inx)? |
the original contourC; (dashed ling. (A9)
where the contou€, is a closed circle of radiug; this circle We shall briefly describe the asymptotic evaluation of Eq.
is chosen so that no other singularities are enclosed bar th@8). The integral form of the normalizatiofas well as the
nth order pole at the origin. similar integrals that appear in the evaluationR(f0,t) for
The functionf(z) is easily evaluated to be t#nr) may be done in an analogous fashion. So referring to

Eq. (A8), as a first step we scaleby n, and use the relation

f_(z)=(7rI2)‘1n§1%z—(wlz)‘lln(l—z), (A5) expp)=lim,_..(1+p/n)". We then have

1 . 1
where the sum is guaranteed to converge sjape 5<1. It Yn~ nal z(R’)ZJO dx e [ 72+ [In(x/ B)] ] (AL0)
is the ease with which this sum may be evaluated in
(2+1) dimensions that makes this case the most analyticallyhereg=ne R’ > nel™?>1. We now split the integration
tractable. DefininR’ =R/(w1?), we have the explicit form  range into three regions and estimate the order of magnitude

for ¢, as of the integral in each region. Regiofi) is defined by
1 dz 1 0<x<1/B, and retaining only dominant terms for small

N — ﬁ; - : _ (A6)  We find (up to prefactors gy ~[ 8In*(8)] . Region(ii) is

2mR Je, 2" " [1+R'In(1-2)] defined by 18<x<g. In this region we may drop I in

. . . (i) __rn2f 21-1 ;
Examination of the integrand reveals that there exist two ompanson to In6), which givesyr "~ [In(A)]" . Region

L : . . it -8
singularities in the complex plane apart from the pole at the("') is defined byx> /3 in which casey,, ~e"". So clearly

origin. These are a branch pointat 1 along with a simple the _contrlbutmn from regmr@u) dominates for '?fg“%‘- In a
pole at similar way, one may establish that the normalization has the

asymptotic form olN,~O(1)+ O[ 1/In(n)]. Putting these re-

[*)?2 sults together gives the form of the probability density shown
zp=1—exp(—1/R’)=1—exp[— * } (A7) in Eq. (45).

e” -1

By cutting the contou; on the negative real axis, we may APPENDIX B
wrap it around the rest of the complex plane as illustrated in

. - In this Appendix we outline the solution of the simulta-
Fig 2. In this way, we have bp

neous iterative equationd8). As before, it is convenient to
use generating functions. Thus we define the functions

E(z)= z2n E’ O(z)= z2n-1 O. B1
We have thus replaced the essentially perturbative expres- vz ngl o V2 ngl ¥ (B1)
sion (A6) by an expression that enables us to extract the )
strong-coupling behavior, if it existéhis actually depends We also define
on the existence of a pole at radids:|z|<1). " w
Whether the residue from the pole & dominates over TFE o — 2n Py 2n—1
the contribution from the branch cut def)btends on the value of f (Z)_Z’l 2o, T (Z)_Za Z Moy (B2)
|zo|. It is clear from the form of the integrand that the inte-
gral will be dominated(for large n) by the pole if it lies Summing the iterative equations over the appropriate weight
within the unit circle. From Eq.(A7) it follows that and using the above definitions yields the algebraic equations

Cl

f# +J' + (residue atz;) =0.
Cq ut
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FIG. 3. The singularity structure in the complexylane for the
evaluation ofy5(z) and ¢°(z). Also illustrated is the deformation
(solid line) of the original contoulC, (dashed line.

YE(2)=15(2) +RE(2)yF(2) - SP(2)y°(2), (B
#9(2)=12(2)+R°(2)F(2) - SF(2)y°(2), (BA)
which may be readily solved, yielding the solutions

15(2)+ S f5(2)2— f°(2)?]

E(2)= — — —_, B5
v 1-(R-9)f5(2)—Rg5(2)*—1°(2)?] ®9
and
— 9(2)

O(2)= — — — : B6
¥z 1-(R-9)f52)—-R952)2—1°(2)?] (B5)
From the particular form of ,, we also have

E(z)=— 5zIn(1-22), (B7)
and

— 1-z

fo(z)=—mln m . (58)
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replace the perturbative expression by the nonperturbative
one by cutting the contouZ; and extending around the sin-
gularities in the complex plane. This is illustrated in Fig. 3
and leads us to the expression

3E +j +f + 2 (residueg=0.
Cy -cut +eut z=%*z,

The existence of a bound state will arise only from there
being a pole within the unit circle. We thus examine the
zeroes of the denominator of the generating functions —i.e.,
the positions of the poles are solutions of

1+ %(R’—S’)In(l—zz)—R’S’In(1+z)ln(1—z)=0,
(B10)

where we have defineR’'=R/(71?), as before, and simi-
larly S’'=S/(wl?). We analyze this equation by first noting
that if p grows witha more slowly thara?, in particular if
p=0(1), then there is no solution for any. On the other
hand, ifp grows likea?, or faster, then so d& and S and
the final term in Eq(B10) plays only a subdominant role.
Therefore the poles are situated-ag,, with

2 1/2

As we vary the parameteys and o, the poles exist within
the unit circle only wherR' >S'. Therefore there is a critical
line in the (p,0) plane that separates the region where poles
exist from the region where they do not, which has the equa-
tion R'=S'. A more precise equation for this line may be
obtained by including the final term in E¢B10) in the
analysis by substituting,= 1— € into the equation and solv-
ing it in the limit e— 0. The resulting condition for criticality

is now

(B11)

Zp:

R!

S =17 2R

(B12)
The right-hand side is a monotonically increasing function of
R’, which reaches the valuel*)~? (corresponding to
o—») when p=ma?in2=p.. The general features of the
critical line are now easy to find: a linear regime near the

Given the definition of the generating functions, we mayorigin and a logarithmic approach @, from below. This

retrieve the original partition functions using

dz—

e_ 1 3g dz —¢ o_ 1 35
lpn_z,n_i C122n+1¢ (Z), ‘//n_zﬂ_i Clzan (Z)a

(B9)

behavior is summarized in E¢0) and illustrated in Fig. 1.

In order to examine the behavior of the line at criticality,
we insert the critical conditio(B12) into the expressions for
the generating functions. One then finds that to leading order
YE(2)=15(2) and y°(2)=1°(z), which directly gives the
partition function at the defect sites with no integration re-

where as befor€, is a circle enclosing the origin of small quired; i.e., we have

enough radius such that it encloses no singularities other than
the pole at the origin.

We now examine the singularity structure in the complex . o . )
z plane. Firstly we note that there now exist two branch The appropriate normalization factors may be derived in
points atz=+1, which we connect to infinity with cuts @n gnalogous way to that described in Sec. V. Explicitly one
along the real axis as shown in Fig. 3. Also, any pole thaf€fines
may exist within the unit circle will have a twin reflected
through the origin due to fact that the denominators of the
generating functions are even functionszofAs before we

yE=1/2n71?), yO=1[(2n—1)7l?]. (B13)

NE= lim J di% Z(x,2n7—e), (B14)

e—0
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and

NO=lim f d Z[ x,(2n—1)7— €]. (B15)
e—0

These functions then satisfy the relatidd§=N¢, and

n—-1 n

NF=1+RX ym—SX vm. (B16)
m=1 m=1

At criticality these functions are asymptotically constants
that along with the results for the partition functiof13)
lead to the asymptotic form of the probability density follow-
ing P(O,n7)~1/n.

In order to examine the bound state one may simply ig-
nore the subdominant contributions from the cuts, and evalu-
ate the residues of the poles aiz,. No explicit details of
this calculation are given here as it may easily be recon-
structed from the analogous case examined in Appendix A.
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